High Angular Resolution Data from the Band Structure of Thin Layers of Indium on Si(111)

Application Notes

The band structure of thin layers of indium on $\mathrm{Si}(111)$ was measured with ARPES. Due to electron confinement in the direction perpendicular to the surface, quantum well states (QWS) are formed. The experiments were performed at the BESSY II 10 m NIM beamline at the U125/2 undulator, which has an energy resolution of less than 1 meV , and a small spot size. The photon energy for all measurements was 26 eV . The energy resolution obtained at the Fermi edge for this data at a pass energy of $5 \mathrm{eV}(\sim 35 \mathrm{meV})$ corresponds to the sample temperature of approximately 50 K . The entrance slit size was 0.5 mm .

Cut through the surface Brillouin zone for a 12 ML thick In film on $\mathrm{Si}(111)$ acquired with PE $=50 \mathrm{eV}$. The features around the zone center are the QWS derived from the $5 p_{z}$ bands. In this image one can see a splitting of the band at approximately $1.6 \AA^{-1}$. This splitting occurs in the $5 p_{x, y}$ derived QWS bending back at the Brillouin zone boundary. The full angular span of both data sets is 87°, indicating the relatively constant background and possibility to resolve features at higher angles. This image is a compilation of six images, hence the intensity variations, taken with a PHOIBOS 100 analyzer with the 2D-CCD Detector. Data courtesy of J.H. Dil and K. Horn (Fritz Haber Institut, Berlin).

SPCCS*

Splitting of the bands around $1.6 \AA^{-1}$, measured with the Medium Angular Dispersion lens mode at 10 eV pass energy. Here the peak splitting is resolved better and the separation of the lines is less than 0.23°. The angles are with respect to the center of the raw image. Data courtesy of J.H. Dil, T.U. Kampen and K Horn (Fritz Haber Institut, Berlin).

$\Delta \theta<0.23^{\circ}$

SPECS GmbH
Surface Analysis and Computer Technology Voltastrasse 5, 13355 Berlin Germany

Phone: +49 30 467824-0
Fax: +49 304642083
E-mail: support@specs.de
http://www.specs.de

